Autumn				
Weeks	Sequence and Theme	National Curriculum Links	Learning Questions (Small Steps)	Key Vocabulary
1-3	Number Place Value	- Identify, represent and estimate numbers using different representations - Recognise the place value of each digit in a 3 -digit number (hundreds, tens, ones) - Count from zero in multiples of $4,8,50$ and 100; find 10 or 100 more or less than a given number - Read and write numbers up to 1,000 in numerals and words - Compare and order numbers up to 1,000	1. Can I represent numbers to 100 ? 2. Can I partition numbers to 100 ? 3. Can I use a number line to 100 ? 4. Can I recognise hundreds? 5. Can I represent numbers to 1,000 ? 6. Can I partition numbers to 1,000 ? 7. Can I do flexible partitioning of numbers to 1,000? 8. Can I look at the structure of a number by considering how many hundreds, tens and ones it is made up of? 9. Can I find 1,10 or 100 more or less? 10. Can I use a number line to 1,000 ? 11. Can I estimate on a number line to 1,000 ? 12. Can I compare numbers to 1,000 ? 13. Can I order numbers to 1,000 ? 14. Can I count in 50 s?	Numbers to one thousand Numbers to one hundred Hundreds Partition, recombine Hundred more/less None Count (on/up/to/from/down) Before, after More, less, many, Few, fewer, least, fewest, smallest, greater, lesser Equal to, the same as Odd, even Pair Units, ones, tens Ten more/less Digit, Numeral Figure(s) Compare Size Value Between, Halfway between Above, below
4-8	$\frac{\text { Number }}{\text { Addition and Subtraction }}$	- Add and subtract numbers mentally, including: - a 3-digit number and ones - a 3-digit number and tens - a 3-digit number and hundreds - Add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction - Solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction - Estimate the answer to a calculation and use inverse operations to check answers	1. Can I apply number bonds within 10 ? 2. Can I add and subtract 1 s ? 3. Can I add and subtract 10 s? 4. Can I add and subtract 10os? 5. Can I spot the pattern? 6. Can I add is across a 10 ? 7. Can I add 10 across a 100 ? 8. Can I subtract 1 s across a 10 ? 9. Can I subtract 10 a across a 100 ? 10. Can I make connections? Can I develop number sense through explicitly exploring the connections between calculations? 11. Can I add two numbers (no exchange)? 12. Can I subtract two numbers (no exchange)? 13. Can I add two numbers (across a 10)? 14. Can I add two numbers (across a 100)? 15. Can I subtract two numbers (across a 10)? 16. Can I subtract two numbers (across a 100)? 17. Can I add 2 -digit and 3 -digit numbers? 18. Can I subtract a 2 -digit number from a 3 digit number? 19. Can I find complements to 100 ? 20. Can I estimate answers? 21. Can I use inverse operations? 22. Can I make decisions about what operation and what method is appropriate to solve a problem?	Column addition and subtraction Number bonds, number line Add, more, plus, make, sum, total, altogether Inverse Double Half, halve Equals, is the same as (including equals sign) Difference between How many more to make...? How many more is...than...? How much more is...? Subtract, take away, minus How many fewer is...than...? How much less is...? How many left?

V1.0

9-12	Number Multiplication and Division A	- Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for 2-digit numbers times 1-digit numbers, using mental and progressing to formal written methods - Show that multiplication of two numbers can be done in any order (commutative) and division on one number by another cannot (Y2) - Count in steps of 2, 3 and 5 from o, and in 10 from any number, forward and backward (Y2) - Recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers (Y2) - Recall and use multiplication and division facts for the 3,4 and 8 multiplication tables	1. Can I recognise equal groups? 2. Can I use arrays? 3. Can I recognise multiples of 2 ? 4. Can I recognise multiples of 5 and 10 ? 5. Can I use sharing and grouping? 6. Can I multiply by 3 ? 7. Can I divide by 3 ? 8. Can I recognise the 3 times-table? 9. Can I multiply by 4? 10. Can I divide by 4? 11. Can I recognise the 4 times-table? 12. Can I multiply by 8 ? 13. Can I divide by 8? 14. Can I recognise the 8 times-table? 15. Can I recognise the 2, 4 and 8 times-tables?	Product Multiples of four, eight, fifty and one hundred Scale up Odd, even Count in twos, threes, fives Count in tens (forwards from/backwards from) How many times? Lots of, groups of Once, twice, three times, five times Multiple of, times, multiply, multiply by Repeated addition Array, row, column Double, halve Share, share equally Group in pairs, threes, etc. Equal groups of Divide, divided by, left, left over
13		Consolidate Autumn 1 lea * Teacher's dis	through recap, revision and real life experience n to start Spring Topic 1 in Week 13/14	

Spring

Weeks	Sequence and Theme	National Curriculum Links	Learning Questions (Small Steps)	Key Vocabulary
1-3	Number Multiplication \& Division B	- Recall and use multiplication facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers (Y2) - Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for 2-digit numbers times 1 -digit numbers, using mental and progressing to formal written methods - Solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects	15. Can I further develop my understanding of multiples of 10 by looking at greater multiples? 16. Can I explore calculations related to known facts? 17. Can I develop my knowledge and understanding of the structure of multiplication? 18. Can I multiply a 2 -digit number by a 1 -digit number - no exchange? 19. Can I multiply a 2 -digit number by a 1 -digit number - with exchange? 20. Can I link multiplication and division facts? 21. Can I divide a 2 -digit number by a 1 -digit number - no exchange? 22. Can I divide a 2 -digit number by a 1 -digit number - flexible partitioning? 23. Can I divide a 2 -digit number by a 1 -digit number - with remainders? 24. Can I develop my understanding of multiplication by focusing on scaling (as opposed to repeated addition)? 25. Can I solve correspondence problems? (how many ways?)	Product Multiples of four, eight, fifty and one hundred Scale up Odd, even Count in twos, threes, fives Count in tens (forwards from/backwards from) How many times? Lots of, groups of Once, twice, three times, five times Multiple of, times, multiply, multiply by Repeated addition Array, row, column Double, halve Share, share equally Group in pairs, threes, etc. Equal groups of Divide, divided by, left, left over

V1.0

4-6	Measurement Length \& Perimeter	- Measure, compare, add and subtract: lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$); mass (kg / g); volume/capacity (l / ml) - Measure the perimeter of simple 2-D shapes	1. Can measure in metres and centimetres? 2. Can I measure in millimetres? 3. Can I measure in centimetres and millimetres? 4. Can I measure in metres, centimetres and millimetres? Can I consider the appropriateness of different units of measurement? 5. Can I use equivalent lengths (metres and centimetres)? 6. Can I use equivalent lengths (centimetres and millimetres)? 7. Can I compare and order lengths using comparison language and inequality symbols? 8. Can I add lengths? 9. Can I subtract lengths? 10. Can I explain what perimeter is? 11. Can I measure perimeter? 12. Can I calculate perimeter?	Leap year Twelve-hour/twenty-four-hour clock Roman numerals I to XIII Quarter past/to $\mathrm{m} / \mathrm{km}, \mathrm{g} / \mathrm{kg}, \mathrm{ml} / \mathrm{l}$ Temperature (degrees) Full, half full, empty Holds, Container Weigh, weighs, balances Heavy, heavier, heaviest, light, lighter, lightest Scales Time, Days of the week: Monday, Tuesday, etc. Seasons: spring, summer, autumn, winter Day, week, month, year, weekend Birthday, holiday Morning, afternoon, evening, night, midnight Bedtime, dinnertime, playtime Today, yesterday, tomorrow Before, after Next, last Now, soon, early, late Quick, quicker, quickest, quickly, fast, faster, fastest, slow, slower, slowest, slowly Old, older, oldest, new, newer, newest Takes longer, takes less time Hour, o'clock, half past Clock, watch, hands How long ago? how long will it be to...? how long will it take to...? how often? Always, never, often, sometimes, usually Once, twice First, second, third, etc. Estimate, close to, about the same as, just over, just under, Too many, too few, not enough, enough Length, width, height, depth Long, longer, longest, short, shorter shortest, tall, taller, tallest, high, higher, highest Low, wide, narrow, deep, shallow, thick, thin, Far, near, close Metre, ruler, metre stick Money, coin, penny, pence, pound, price, cost, buy, sell, spend, spent, pay, change, dear(er), costs more, costs less, cheaper, costs the same as How much? how many? Total
7-9	Number Fraction A	- Recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions with small denominators - Compare and order unit fractions, and fractions with the same denominators - Measure, compare, add and subtract: lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$); mass (kg / g); volume/capacity ($1 / \mathrm{ml}$)	1. Can I understand the denominators of unit fractions? 2. Can I compare and order unit fractions? 3. Can I understand the role of the numerator in unit and non-unit fractions? 4. Can I understand the whole? Can I explore the whole in relation to fractions? 5. Can I compare and order non-unit fractions?	Equivalent decimals and fractions Numerator, denominator Unit fraction, non-unit fraction Compare and order Tenths Three quarters, one third, a third Equivalence, equivalent Whole Equal parts, four equal parts One half, two halves

		- Recognise and use fractions as numbers: unit fractions and non-unit fractions with small denominators - Recognise and show, using diagrams, equivalent fractions with small denominators	6. Can I use my understanding of numerators and denominators to determine how many equal parts a scale has been split into, and then what fraction is shown (this is covered in contexts such as mass, volume and length)? 7. Can I explore how fractions can be represented on a number line? 8. Can I count in fractions on a number line? 9. Can I explore finding equivalent fractions by comparing multiple number lines and using double number lines? 10. Can I explore bar models as another way of representing equivalent fractions?	A quarter, two quarters
10-12	$\frac{\text { Measurement }}{\text { Mass \& Capacity }}$	- Measure, compare, add and subtract: lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$); mass (kg / g); volume/capacity (l/ml)	1. Can I familiarise with using scales to read measurements? 2. Can I measure mass in grams? 3. Can I measure mass in kilograms and grams? 4. Can I find equivalent masses (kilograms and grams)? 5. Can I compare the masses of different objects using grams and kilograms? 6. Can I add and subtract mass? 7. Can I measure capacity and volume in millilitres? 8. Can I measure capacity and volume in litres and millilitres? 9. Can I find equivalent capacities and volumes (in litres and millilitres)? 10. Can I compare capacities and volumes? 11. Can I add and subtract capacities and volumes?	Leap year Twelve-hour/twenty-four-hour clock Roman numerals I to XIII Quarter past/to $\mathrm{m} / \mathrm{km}, \mathrm{g} / \mathrm{kg}, \mathrm{ml} / \mathrm{l}$ Temperature (degrees) Full, half full, empty Holds, Container Weigh, weighs, balances Heavy, heavier, heaviest, light, lighter, lightest Scales Time, Days of the week: Monday, Tuesday, etc. Seasons: spring, summer, autumn, winter Day, week, month, year, weekend Birthday, holiday Morning, afternoon, evening, night, midnight Bedtime, dinnertime, playtime Today, yesterday, tomorrow Before, after Next, last Now, soon, early, late Quick, quicker, quickest, quickly, fast, faster, fastest, slow, slower, slowest, slowly Old, older, oldest, new, newer, newest Takes longer, takes less time Hour, o'clock, half past Clock, watch, hands How long ago? how long will it be to...? how long will it take to...? how often? Always, never, often, sometimes, usually Once, twice First, second, third, etc. Estimate, close to, about the same as, just over, just under, Too many, too few, not enough, enough Length, width, height, depth Long, longer, longest, short, shorter shortest, tall, taller, tallest, high, higher, highest Low, wide, narrow, deep, shallow, thick, thin, Far, near, close Metre, ruler, metre stick

| | | | Money, coin, penny, pence, pound, price, cost, buy,
 sell, spend, spent, pay, change, dear(er), costs more,
 costs less, cheaper, costs the same as
 How much? how many?
 Total |
| :--- | :--- | :--- | :--- | :--- |

Summer

Weeks	Sequence and Theme	National Curriculum Links	Learning Questions (Small Steps)	Key Vocabulary
1-2	Number Fraction B	- Add and subtract fractions with the same denominator within one whole - Recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions with small denominators	1. Can I add fractions? 2. Can I subtract fractions? 3. Can I partition a whole using fractions? 4. Can I use unit fractions as operators? Can I find fraction of a set of objects? 5. Can I find non-unit fractions of a set of objects? 6. Can I use reasoning with fractions of an amount?	Equivalent decimals and fractions Numerator, denominator Unit fraction, non-unit fraction Compare and order Tenths Three quarters, one third, a third Equivalence, equivalent Whole Equal parts, four equal parts One half, two halves A quarter, two quarters
3-4	$\begin{aligned} & \text { Measurement } \\ & \hline \text { Money } \end{aligned}$	- Add and subtract amounts of money to give change, using both $£$ and p in practical contexts	1. Can I use pounds and pence? 2. Can I convert pounds and pence? 3. Can I add money? 4. Can I subtract money? 5. Can I calculate/find change?	Leap year Twelve-hour/twenty-four-hour clock Roman numerals I to XIII Quarter past/to $\mathrm{m} / \mathrm{km}, \mathrm{g} / \mathrm{kg}, \mathrm{ml} / \mathrm{l}$ Temperature (degrees) Full, half full, empty Holds, Container Weigh, weighs, balances Heavy, heavier, heaviest, light, lighter, lightest Scales Time, Days of the week: Monday, Tuesday, etc. Seasons: spring, summer, autumn, winter Day, week, month, year, weekend Birthday, holiday Morning, afternoon, evening, night, midnight Bedtime, dinnertime, playtime Today, yesterday, tomorrow Before, after Next, last Now, soon, early, late Quick, quicker, quickest, quickly, fast, faster, fastest, slow, slower, slowest, slowly Old, older, oldest, new, newer, newest Takes longer, takes less time Hour, o'clock, half past Clock, watch, hands How long ago? how long will it be to...? how long will it take to...? how often? Always, never, often, sometimes, usually Once, twice First, second, third, etc.

				Estimate, close to, about the same as, just over, just under, Too many, too few, not enough, enough Length, width, height, depth Long, longer, longest, short, shorter shortest, tall, taller, tallest, high, higher, highest Low, wide, narrow, deep, shallow, thick, thin, Far, near, close Metre, ruler, metre stick Money, coin, penny, pence, pound, price, cost, buy, sell, spend, spent, pay, change, dear(er), costs more, costs less, cheaper, costs the same as How much? how many? Total
5-7	Measurement Time	- Tell and write the time from an analogue clock, including using Roman numerals from I to XII, and 12-hour and 24-hour clocks - Estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes and hours; use vocabulary such as o'clock, am/pm, morning, afternoon, noon and midnight - Know the number of seconds in a minute and the number of days in each month, year and leap year - Compare durations of events	1. Can I read, write and use Roman numerals to 12 in the context of time? 2. Can I tell the time to 5 minutes? 3. Can I tell the time to the minute? 4. Can I read time on a digital clock? 5. Can I use am and pm? 6. Can I understand and use years, months and days and the relationship between them? 7. Can I understand days and hours and the relationship between them? 8. Can I find the durations of time using hours and minutes, and looking at start and end times? 9. Can I use durations to work out the time? 10. Can I explore the unit of time using minutes and seconds? 11. Can I understand when to use different units of time and compare lengths of time written using different units? 12. Can I solve problems with time?	Leap year Twelve-hour/twenty-four-hour clock Roman numerals I to XIII Quarter past/to $\mathrm{m} / \mathrm{km}, \mathrm{g} / \mathrm{kg}, \mathrm{ml} / \mathrm{l}$ Temperature (degrees) Full, half full, empty Holds, Container Weigh, weighs, balances Heavy, heavier, heaviest, light, lighter, lightest Scales Time, Days of the week: Monday, Tuesday, etc. Seasons: spring, summer, autumn, winter Day, week, month, year, weekend Birthday, holiday Morning, afternoon, evening, night, midnight Bedtime, dinnertime, playtime Today, yesterday, tomorrow Before, after Next, last Now, soon, early, late Quick, quicker, quickest, quickly, fast, faster, fastest, slow, slower, slowest, slowly Old, older, oldest, new, newer, newest Takes longer, takes less time Hour, o'clock, half past Clock, watch, hands How long ago? how long will it be to...? how long will it take to...? how often? Always, never, often, sometimes, usually Once, twice First, second, third, etc. Estimate, close to, about the same as, just over, just under, Too many, too few, not enough, enough Length, width, height, depth Long, longer, longest, short, shorter shortest, tall, taller, tallest, high, higher, highest Low, wide, narrow, deep, shallow, thick, thin, Far, near, close Metre, ruler, metre stick

				Money, coin, penny, pence, pound, price, cost, buy, sell, spend, spent, pay, change, dear(er), costs more, costs less, cheaper, costs the same as How much? how many? Total
8-9	$\begin{aligned} & \text { Geometry } \\ & \text { Shape } \end{aligned}$	- Recognise angles as a property of shape or a description of a turn - Identify right angles, recognise that two right angles make a half turn, three make three-quarters of a turn and four a complete turn; identify whether angles are greater than or less than a right angle - Measure the perimeter of simple 2-D shapes - Draw 2-D shapes and make 3-D shapes using modelling materials; recognise 3^{-} D shapes in different orientations and describe them - Measure, compare, add and subtract: lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$); mass (kg / g); volume/capacity (l/ml) - Identify horizontal and vertical lines and pairs of perpendicular and parallel lines	1. Can I identify turns and angles? 2. Can I recognise right angles? 3. Can I compare angles? 4. Can I measure and draw accurately? 5. Can I use and draw horizontal and vertical lines? 6. Can I identify parallel and perpendicular lines? 7. Can I recognise and describe 2-D shapes? 8. Can I draw polygons? 9. Can I recognise and describe 3-D shapes? 10. Can I make 3-D shapes?	Size Bigger, larger, smaller Symmetrical, line of symmetry Fold Match Mirror line, reflection Pattern, repeating pattern Group, sort Cube, cuboids, pyramid, sphere, cone, cylinder, circle, triangle, square Shape Flat, curved, straight, round Hollow, solid Corner (point, pointed), Vertices Face, side, edge Make, build, draw Horizontal, vertical, perpendicular and parallel lines
10-11	Statistics	- Interpret and present data using bar charts, pictograms and tables - Solve one-step and two-step questions using information presented in scaled bar charts and pictograms and tables	1. Can I Interpret pictograms? 2. Can I draw pictograms? 3. Can I interpret bar charts? 4. Can I draw bar charts? 5. Can I collect and represent data? 6. Can I interpret information from simple Twoway tables?	Count, tally, sort Vote Graph, block graph, pictogram, Represent Group, set, list, table Label, title Most popular, most common, least popular, least common Chart, bar chart, frequency table, Carroll diagram, Venn diagram Axis, axes Diagram

