Autumn				
Weeks	Sequence and Theme	National Curriculum Links	Learning Questions (Small Steps)	Key Vocabulary
1-4	Number Place Value	- Read and write numbers up to 1,000 in numerals and words (Y_{3}) - Identify, represent and estimate numbers using different representations - Recognise the place value of each digit in a 3 -digit number (hundreds, tens, ones) (Y_{3}) - Count in multiples of 6, 7, 9, 25 and 1,000 - Recognise the place value of each digit in a 4-digit number (thousands, hundreds, tens and ones) - Find 1,000 more or less than a given number - Order and compare numbers beyond 1,000 - Read Roman numerals to 100 (I to C) and know that over time, the numeral system changed to include the concept of zero and place value - Round any number to the nearest 10 , 100 or 1,000	1. Can I represent numbers to 1,000 ? 2. Can I partition numbers to 1,000 ? 3. Can I use a number line to 1,000 ? 4. Can I recognise number in the thousands? 5. Can I represent numbers to 10,000 ? 6. Can I partition numbers to 10,000 ? 7. Can I use flexible partitioning of numbers to 10,000? 8. Can I find $1,10,100,1,000$ more or less of a number? 9. Can I use a number line to 10,000 ? 10. Can I estimate on a number line to 10,000 ?? 11. Can I compare numbers to 10,000 ? 12. Can I order numbers to 10,000 ? 13. Can I use Roman Numerals? 14. Can I round to the nearest 10 ? 15. Can I round to the nearest 100 ? 16. Can I round to the nearest 1,000 ? 17. Can I round to the nearest 10,100 or 1,000 ?	Tenths, hundredths Decimal (places) Round (to nearest) Thousand more/less than Negative integers Count through zero Roman numerals (I to C) Numbers to one thousand Numbers to one hundred Hundreds Partition, recombine Hundred more/less None Count (on/up/to/from/down) Before, after More, less, many, Few, fewer, least, fewest, smallest, greater, lesser Equal to, the same as Odd, even Pair Units, ones, tens Ten more/less Digit, Numeral Figure(s) Compare Size Value Between, Halfway between Above, below
5-7	$\frac{\text { Number }}{\text { Addition and Subtraction }}$	- Add and subtract numbers with up to four digits using the formal written methods of columnar addition and subtraction where appropriate - Solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why - Estimate and use inverse operations to check answers to a calculation	1. Can I add and subtract $1 \mathrm{~S}, 10 \mathrm{~s}, 100 \mathrm{~s}$ and 1,ooos? 2. Can I add up to two 4-digit numbers - no exchange? 3. Can I add two 4-digit numbers - one exchange? 4. Can I add two 4-digit numbers - more than one exchange? 5. Can I subtract two 4-digit numbers - no exchange? 6. Can I subtract two 4-digit numbers - one exchange? 7. Can I subtract two 4-digit numbers - more than one exchange? 8. Can I make choices about which method is most appropriate for a given calculation (efficient subtraction)? 9. Can I estimate answers? 10. Can I use the inverse relationship between addition and subtraction (checking strategies)?	Column addition and subtraction Number bonds, number line Add, more, plus, make, sum, total, altogether Inverse Double Half, halve Equals, is the same as (including equals sign) Difference between How many more to make...? How many more is...than...? How much more is...? Subtract, take away, minus How many fewer is...than...? How much less is...? How many left?

V1.0

8	$\begin{array}{\|l} \hline \text { Measurement } \\ \text { Area } \end{array}$	- Find the area of rectilinear shapes by counting squares	1. Can I explain what area is? 2. Can I use the strategy of counting? the number of squares inside a shape to find its area? 3. Can I make rectilinear shapes using a given number of squares? 4. Can I compare the areas of rectilinear shapes where the same size square has been used?	Convert Leap year Twelve hour/twenty-four-hour clock Roman numerals I to XIII Quarter past/to $\mathrm{m} / \mathrm{km}, \mathrm{g} / \mathrm{kg}, \mathrm{ml} / \mathrm{l}$ Temperature (degrees) Full, half full, empty Holds, Container Weigh, weighs, balances Heavy, heavier, heaviest, light, lighter, lightest Scales Time, Days of the week: Monday, Tuesday, etc. Seasons: spring, summer, autumn, winter Day, week, month, year, weekend Birthday, holiday Morning, afternoon, evening, night, midnight Bedtime, dinnertime, playtime Today, yesterday, tomorrow Before, after Next, last Now, soon, early, late Quick, quicker, quickest, quickly, fast, faster, fastest, slow, slower, slowest, slowly Old, older, oldest, new, newer, newest Takes longer, takes less time Hour, o'clock, half past Clock, watch, hands How long ago? how long will it be to...? how long will it take to...? how often? Always, never, often, sometimes, usually Once, twice First, second, third, etc. Estimate, close to, about the same as, just over, just under, Too many, too few, not enough, enough Length, width, height, depth Long, longer, longest, short, shorter shortest, tall, taller, tallest, high, higher, highest Low, wide, narrow, deep, shallow, thick, thin, Far, near, close Metre, ruler, metre stick Money, coin, penny, pence, pound, price, cost, buy, sell, spend, spent, pay, change, dear(er), costs more, costs less, cheaper, costs the same as How much? how many? Total
9-11	$\frac{\text { Number }}{\text { Multiplication and Division }}$	- Recall multiplication and division facts for multiplication tables up to 12×12 - Recognise and use factor pairs and commutativity in mental calculations - Count in multiples of 6, 7, 9, 25 and 1,000 - Use place value, known and derived facts to multiply and divide mentally, including: multiplying by o and 1 ;	1. Can I recognise multiples of 3 ? 2. Can I multiply and divide by 6 ? 3. Can I recognise the 6 times-table and its division facts? 4. Can I multiply and divide by 9 ? 5. Can I recognise the 9 times-table and its division facts? 6. Can I recognise the 3, 6 and 9 times-tables? 7. Can I multiply and divide by 7 ?	Multiplication facts (up to 12x12) Division facts Inverse Derive Product Multiples of four, eight, fifty and one hundred Scale up Odd, even Count in twos, threes, fives Count in tens (forwards from/backwards

		dividing by 1 ; multiplying together three numbers	8. Can I recognise the 7 times-table and its division facts? 9. Can I recognise the 11 times-table and its division facts? 10. Can I recognise the 12 times-table and division facts? 11. Can I multiply by 1 and o? 12. Can I divide a number by 1 and itself? 13. Can I multiply three numbers?	from) How many times? Lots of, groups of Once, twice, three times, five times Multiple of, times, multiply, multiply by Repeated addition Array, row, column Double, halve Share, share equally Group in pairs, threes, etc. Equal groups of, Divide, divided by, left, left over
12-14	Consolidate Autumn 1 learning through recap, revision and real life experiences. * Teacher's discretion to start Spring Topic 1 in Week 13/14			

Spring				
Weeks	Sequence and Theme	National Curriculum Links	Learning Questions (Small Steps)	Key Vocabulary
1-3	Number Multiplication \& Division B	- Recognise and use factor pairs and commutativity in mental calculations - Recall multiplication and division facts for multiplication tables up to 12×12 - Multiply and divide whole numbers and those involving decimals by 10,100 and 1,000 (Y5) - Solve problems involving multiplying and adding, including using the distributive law to multiply 2-digit numbers by 1 digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects - Multiply 2-digit and 3-digit numbers by a 1-digit number using formal written layout - Use place value, known and derived facts to multiply and divide mentally, including: multiplying by o and 1 ; dividing by 1 ; multiplying together 3 numbers	18. Can I understand factor pairs? 19. Can I use factor pairs? 20. Can I understand the concept of multiplying by 10 ? 21. Can I understand the concept of multiplying by 100 ? 22. Can I understand the concept of dividing by 10 ? 23. Can I understand the concept of dividing by 100? 24. Can I explore calculations related to known facts (multiplication and division)? 25. Can I use a variety of informal written methods to multiply a 2 -digit number by a 1 digit number? 26. Can I multiply a 2 -digit number by a 1 -digit number using the formal written method? 27. Can I multiply a 3 -digit number by a 1 -digit number using the formal written method? 28. Can I divide a 2 -digit number by a 1 -digit number? 29. Can I divide a 2 -digit number by a 1 -digit number that leaves a remainder? 30. Can I divide a 3-digit number by a 1 -digit number? 31. Can I answer correspondence problems? 32. Can I choose the most efficient multiplication method? Can I make decisions regarding the most efficient or appropriate multiplication methods to use in a range of contexts?	Multiplication facts (up to 12x12) Division facts Inverse Derive Product Multiples of four, eight, fifty and one hundred Scale up Odd, even Count in twos, threes, fives Count in tens (forwards from/backwards from) How many times? Lots of, groups of Once, twice, three times, five times Multiple of, times, multiply, multiply by Repeated addition Array, row, column Double, halve Share, share equally Group in pairs, threes, etc. Equal groups of, Divide, divided by, left, left over
4-5	Measurement Length \& Perimeter	- Convert between different units of measure [for example, kilometre to metre; hour to minute]	1. Can I measure in kilometres and metres? 2. Can I use equivalent lengths (kilometres and metres)? 3. Can I explore Perimeter on a grid?	Convert Leap year Twelve hour/twenty-four-hour clock Roman numerals I to XIII

V1.0

		- Measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres - Small Steps 8 and 9 are not taken from the Year 4 National Curriculum. They are included to take into account the non-statutory DfE Ready to Progress guidance.		Can I explore perimeter further with a focus on rectilinear shapes, where all sides meet at right angles (these rectilinear shapes will be drawn on squared grids, mainly centimetre squared grids)? Can I calculate the perimeter of a rectangle (using the side lengths)? Can I calculate perimeter of rectilinear shapes (both with and without grids)? Can I find missing lengths in rectilinear shapes? Can I calculate perimeter of rectilinear shapes? Can I calculate the perimeter of regular polygons? Can I calculate the perimeter of all polygons (regular and irregular)?	Quarter past/to $\mathrm{m} / \mathrm{km}, \mathrm{g} / \mathrm{kg}, \mathrm{ml} / \mathrm{l}$ Temperature (degrees) Full, half full, empty Holds, Container Weigh, weighs, balances Heavy, heavier, heaviest, light, lighter, lightest Scales Time, Days of the week: Monday, Tuesday, etc. Seasons: spring, summer, autumn, winter Day, week, month, year, weekend Birthday, holiday Morning, afternoon, evening, night, midnight Bedtime, dinnertime, playtime Today, yesterday, tomorrow Before, after Next, last Now, soon, early, late Quick, quicker, quickest, quickly, fast, faster, fastest, slow, slower, slowest, slowly Old, older, oldest, new, newer, newest Takes longer, takes less time Hour, o'clock, half past Clock, watch, hands How long ago? how long will it be to...? how long will it take to...? how often? Always, never, often, sometimes, usually Once, twice First, second, third, etc. Estimate, close to, about the same as, just over, just under, Too many, too few, not enough, enough Length, width, height, depth Long, longer, longest, short, shorter shortest, tall, taller, tallest, high, higher, highest Low, wide, narrow, deep, shallow, thick, thin, Far, near, close Metre, ruler, metre stick Money, coin, penny, pence, pound, price, cost, buy, sell, spend, spent, pay, change, dear(er), costs more, costs less, cheaper, costs the same as How much? how many? Total
6-9	Number Fractions	- Recognise and use fractions as numbers: unit fractions and non-unit fractions with small denominators (Y_{3}) - Small Steps 2, 3, 4, 5, 6, 7 and 8 are not taken from the Year 4 National Curriculum. They are included to take into account the non-statutory DfE Ready to Progress guidance. - Recognise and show, using diagrams, families of common equivalent fractions - Add and subtract fractions with the same denominator		Can I understand the whole? Can I explore fractions greater than 1 ? Can I partition a mixed number? Can I deeper my understanding of how mixed numbers are represented on a number line? Can I compare and order mixed numbers? Can I understand improper fractions? Can I convert mixed numbers to improper fraction? Can I convert improper fractions to mixed numbers? Can I use a number lines to find equivalent fractions by looking at fractions that are in line with each other (equal in value)?	Equivalent decimals and fractions Numerator, denominator Unit fraction, non-unit fraction Compare and order Tenths Three quarters, one third, a third Equivalence, equivalent Whole Equal parts, four equal parts One half, two halves A quarter, two quarters

$10-12$	Number Decimals A	Count up and down in tenths; recognise that tenths arise from dividing an object into 10 equal parts and in dividing 1-digit numbers or quantities by 10 (Y3) Recognise and write decimal equivalents of any number of tenths or hundredths Compare numbers with the same number of decimal places up to 2 decimal places	
Find the effect of dividing a 1- or 2-digit number by 10 and 100, identifying the value of the digits in the answer as ones, tenths and hundredths Count up and down in hundredths; recognise that hundredths arise when dividing an object by 100 and dividing tenths by 10			
Recognise and show, using diagrams, families of common equivalent fractions			

10. Can I develop my understanding of equivalent fractions, both within 1 and greater than 1 (mainly through exploring bar models)?
11. Can I add two or more fractions with the same denominator?
12. Can I add fractions and mixed numbers?
13. Can I subtract two fractions with the same denominator?
14. Can I subtract from whole amounts?
15. Can I subtract from mixed numbers?
16. Can I explore the idea of a tenth as a fraction
17. Can I explore tenths as decimals?
18. Can I continue to explore the tenths column in a place value chart, extending my previous learning to include numbers greater than 1 ?
19. Can I extend my understanding of tenths by exploring them on a number line?
20. Can I divide a 1 -digit number by 10 ?
21. Can I divide a 2 -digit number by 10 ?
22. Can I explore the idea of a hundredth as a fraction?
23. Can I explore hundredths as decimals?
24. Can I continue to explore hundredths as decimals by looking at the hundredths column in a place value chart?
25. Can I divide a 1 - or 2 -digit number by 100 ?

Equivalent decimals and fractions
Numerator, denominator
Unit fraction, non-unit fraction
Compare and order
Tenths
Three quarters, one third, a third
Equivalence, equivalent
Whole
Equal parts, four equal parts
One half, two halves
A quarter, two quarters

Summer

Summer				
Weeks	Sequence and Theme	National Curriculum Links	Learning Questions (Small Steps)	Key Vocabulary
1-2	Number Decimals B	- Recognise and write decimal equivalents of any number of tenths or hundredths - Solve simple measure and money problems involving fractions and decimals to 2 decimal places - Compare numbers with the same number of decimal places up to 2 decimal places - Round decimals with 1 decimal place to the nearest whole number - Recognise and write decimal equivalents to $1 / 4,1 / 2$ and $3 / 4$	33. Can I make a whole with tenths? 34. Can I make a whole with hundredths? 35. Can I partition decimals? 36. Can I flexibly partition decimals? 37. Can I compare decimals? 38. Can I order decimals? 39. Can I round to the nearest whole number? 40. Can I write halves and quarters as decimals?	Equivalent decimals and fractions Numerator, denominator Unit fraction, non-unit fraction Compare and order Tenths Three quarters, one third, a third Equivalence, equivalent Whole Equal parts, four equal parts One half, two halves A quarter, two quarters

V1.0

3-4	Measurement Money	- Estimate, compare and calculate different measures, including money in pounds and pence	1. Can I write money using decimals? 2. Can I convert between pounds and pence? 3. Can I compare amounts of money? 4. Can I estimate with money? 5. Can I calculate with money? 6. Can I solve problems with money?	Convert Leap year Twelve hour/twenty-four-hour clock Roman numerals I to XIII Quarter past/to $\mathrm{m} / \mathrm{km}, \mathrm{g} / \mathrm{kg}, \mathrm{ml} / \mathrm{l}$ Temperature (degrees) Full, half full, empty Holds, Container Weigh, weighs, balances Heavy, heavier, heaviest, light, lighter, lightest Scales Time, Days of the week: Monday, Tuesday, etc. Seasons: spring, summer, autumn, winter Day, week, month, year, weekend Birthday, holiday Morning, afternoon, evening, night, midnight Bedtime, dinnertime, playtime Today, yesterday, tomorrow Before, after Next, last Now, soon, early, late Quick, quicker, quickest, quickly, fast, faster, fastest, slow, slower, slowest, slowly Old, older, oldest, new, newer, newest Takes longer, takes less time Hour, o'clock, half past Clock, watch, hands How long ago? How long will it be to...? How long will it take to...? How often? Always, never, often, sometimes, usually Once, twice First, second, third, etc. Estimate, close to, about the same as, just over, just under, Too many, too few, not enough, enough Length, width, height, depth Long, longer, longest, short, shorter shortest, tall, taller, tallest, high, higher, highest Low, wide, narrow, deep, shallow, thick, thin, Far, near, close Metre, ruler, metre stick Money, coin, penny, pence, pound, price, cost, buy, sell, spend, spent, pay, change, dear(er), costs more, costs less, cheaper, costs the same as How much? How many? Total
5-6	Measurement Time	- Solve problems involving converting from hours to minutes, minutes to seconds, years to months, weeks to days - Read, write and convert time between analogue and digital 12- and 24-hour clocks	1. Can I explain the relationship between years, months, weeks and days? 2. Can I explain the relationship between hours, minutes and seconds? 3. Can I convert between analogue and digital times? 4. Can I convert to the 24-hour clock? 5. Can I convert from the 24 -hour clock?	Convert Leap year Twelve hour/twenty-four-hour clock Roman numerals I to XIII Quarter past/to $\mathrm{m} / \mathrm{km}, \mathrm{g} / \mathrm{kg}, \mathrm{ml} / \mathrm{l}$ Temperature (degrees) Full, half full, empty Holds, Container Weigh, weighs, balances Heavy, heavier, heaviest, light, lighter, lightest

				Scales Time, Days of the week: Monday, Tuesday, etc. Seasons: spring, summer, autumn, winter Day, week, month, year, weekend Birthday, holiday Morning, afternoon, evening, night, midnight Bedtime, dinnertime, playtime Today, yesterday, tomorrow Before, after Next, last Now, soon, early, late Quick, quicker, quickest, quickly, fast, faster, fastest, slow, slower, slowest, slowly Old, older, oldest, new, newer, newest Takes longer, takes less time Hour, o'clock, half past Clock, watch, hands How long ago? How long will it be to...? How long will it take to...? How often? Always, never, often, sometimes, usually Once, twice First, second, third, etc. Estimate, close to, about the same as, just over, just under, Too many, too few, not enough, enough Length, width, height, depth Long, longer, longest, short, shorter shortest, tall, taller, tallest, high, higher, highest Low, wide, narrow, deep, shallow, thick, thin, Far, near, close Metre, ruler, metre stick Money, coin, penny, pence, pound, price, cost, buy, sell, spend, spent, pay, change, dear(er), costs more, costs less, cheaper, costs the same as How much? How many? Total
7-8	$\begin{aligned} & \hline \text { Geometry } \\ & \text { Shape } \end{aligned}$	- Recognise angles as a property of shape or a description of a turn (Y_{3}) - Identify acute and obtuse angles and compare and order angles up to two right angles by size - Compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes - Identify lines of symmetry in 2-D shapes presented in different orientations - Complete a simple symmetric figure with respect to a specific line of symmetry	1. Can I understand angles as turns? 2. Can I identify angles? 3. Can I compare and order angles? 4. Can I explore different types of triangles? 5. Can I explore different types of quadrilaterals? 6. Can I extend my knowledge of polygons? 7. Can I identify different lines of symmetry? 8. Can I complete a symmetric figure?	Size Bigger, larger, smaller Symmetrical, line of symmetry Fold Match Mirror line, reflection Pattern, repeating pattern Group, sort Cube, cuboids, pyramid, sphere, cone, cylinder, circle, triangle, square Shape Flat, curved, straight, round Hollow, solid Corner (point, pointed), Vertices Face, side, edge Make, build, draw Horizontal, vertical, perpendicular and parallel lines Quadrilaterals Triangles Right angle, acute and obtuse angles

V1.0

9	Statistics	- Interpret and present discrete and continuous data using appropriate graphical methods, including bar charts and time graphs - Solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs	1. Can interpret charts? 2. Can I solve comparison, sum and difference problems using discrete data? 3. Can I interpret line graphs? 4. Can I draw line graphs?	Count, tally, sort Vote Graph, block graph, pictogram, Represent Group, set, list, table Label, title Most popular, most common, least popular, least common Chart, bar chart, frequency table, Carroll diagram, Venn diagram Axis, axes Diagram Continuous data Line graph
10-11	$\frac{\text { Geometry }}{\text { Position \& Direction }}$	- Describe positions on a 2-D grid as coordinates in the first quadrant - Plot specified points and draw sides to complete a given polygon - Describe movements between positions as translations of a given unit to the left/right and up/down	1. Can I describe position using coordinates? 2. Can I plot coordinates? 3. Can I draw 2-D shapes on a grid? 4. Can I translate on a grid? 5. Can I describe translation on a grid?	Position Over, under, underneath, above, below, top, bottom, side On, in, outside, inside Around, in front, behind Front, back Before, after Beside, next to, opposite Apart Between, middle, edge, centre Corner Direction Left, right, up, down, forwards, backwards, sideways Across Close, far, near Along, through To, from, towards, away from Movement Slide, roll, turn, whole turn, half turn Stretch, bend Rotation Clockwise, anticlockwise Straight line Ninety degree turn, right angle Greater/less than ninety degrees Orientation (same orientation, different orientation) Coordinates Translation Quadrant x-axis, y-axis Perimeter and area
12			CONSOLIDATION	

